Properties of Photoexcited States of C_{180} **, a Triangle Trimer of** C_{60}

Mamoru Fujitsuka, Koichi Fujiwara,† Yasujiro Murata,† Shinobu Uemura,†† Masashi Kunitake,†† Osamu Ito,* and Koichi Komatsu*†

Institute for Chemical Reaction Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577

†*Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011*

††*Applied Chemistry and Biochemistry, Kumamoto University, 39-1 Kurokami 2, Kumamoto, 860-8555*

(Received February 9, 2001; CL-010114)

Photophysical properties of C180 "*cis*-2/*cis*-2/*cis*-2", a triangle triad of C_{60} , were investigated by various methods including a transient absorption spectroscopy. Fluorescence and triplet absorption spectra were similar to those of C_{120} (C₆₀ dimer) and other 1,2-adducts of C_{60} . On the other hand, short fluorescence lifetime and small quantum yield for the intersystem crossing process indicate that the photophysical properties of C_{180} are affected by the non-radiative process in the singlet excited state.

Fullerenes form their polymers and oligomers under various conditions.1 Studies on well-defined oligomers give fruitful information on the properties of fullerene polymers. Nowadays, photophysical and photochemical properties of fullerene dimers have been investigated by several groups.^{2–6} On the other hand, there is no report on the photoexcitation and relaxation processes of larger oligomers, such as C_{180} . In the present paper, we report the first study on the photoexcited states of C_{180} "*cis-2/cis-2/cis-2*", a triangle trimer of C_{60} .

 $C₁₈₀$ (Inset of Figure 1) was synthesized by the method reported previously.7 Identification of the sample was carried out using APCI mass spectroscopy, IR, and STM observation.^{7,8} Purity of the sample was ca. 95%. In the present paper, all the experiments were carried out employing *o*-dichlorobenzene (DCB) as a solvent, since other conventional organic solvents for fullerenes such as toluene and benzonitrile did not show sufficient solubility for the spectroscopic measurements of C_{180} .

An absorption spectrum of C_{180} showed peaks at 700 and 329 nm with a shoulder around 433 nm (Figure 1). The absorption band at 700 nm is a characteristic band for 1,2-adducts of fullerene $(C_{60}R)^9$. Similar absorption bands were confirmed in

Figure 1. Absorption and fluorescence spectra of C_{180} in DCB. Inset: Molecular structure of C_{180} "cis-2/cis-2/cis-2".

the spectrum of C_{120} (C₆₀-dimer).^{2,3} These findings indicate that electronic interaction between the C_{60} -moieties of C_{180} is small in the ground state.

A fluorescence spectrum showed a peak at 710 nm as shown in Figure 1, indicating that the energy level of the lowest singlet excited state (Es) of C₁₈₀ is almost the same as C₆₀, C₆₀R and C_{120} (Table 1). Stokes shift was 200 cm⁻¹, which is larger than those of C_{60} and $C_{60}R$ (120–140 cm⁻¹),⁹ suggesting that structural relaxation of C_{180} in the singlet excited state is larger than C_{60} and $C_{60}R$. The quantum yield for the fluorescence (Φ_F) was estimated to be 5.5×10^{-4} , which is an intermediate value of C₆₀ and C_{120} (C₆₀-dimer). The larger Φ_F value than C₆₀ can be explained by the reduction of symmetry of the C_{60} -moiety. On the other hand, increase in vibration-mode will reduce the Φ_F value of C_{180} than C_{120} . The increase of the non-radiative processes of C_{180} accords with a shorter fluorescence lifetime of C_{180} ($\tau_F = 0.9$ ns) than other fullerene compounds (Table 1).

Table 1. Photophysical properties of C_{60} , $C_{60}R$, C_{120} , and C_{180}

	C_{60}	$C_{60}R^4$	C_{120}	C_{180}
singlet				
Es/eV	1.7	$1.7 - 1.8$	1.7	1.7
τ_F / ns	1.2	$1.2 - 1.3$	1.6	0.9
$\Phi_{\rm E}$	3.2×10^{-4}	$(1.0-1.2)\times10^{-3}$	7.9×10^{-4}	5.5×10^{-4}
triplet				
λ_{TT} / nm	750	680-700	700	700
$\epsilon_T^{\ c}$	1.6×10^{4}	$(1.4 - 1.6) \times 10^4$	1.4×10^{4}	2.7×10^{3}
$\tau_T/\mu s$	55	$24 - 29$	23	24
$\Phi_{\rm{isc}}$	1.0	$0.88 - 0.95$	0.7 ± 0.1	0.74 ± 0.1
a Erom ref 0 ${}^{\text{b}}\mathbf{F}_{\text{r}}$ of 2 $c_{\text{In mol}^{-1}}$ cm^{-1}				

From ret 9. "From ret 3. $\mathop{\text{Im}}$ mol $\mathop{\text{cm}}$.

Upon nanosecond laser irradiation (355 nm, 6 ns fwhm), C_{180} showed transient absorption bands (λ_{TT}) at 700 and < 400 nm accompanying shoulders around 1000 and 560 nm (Figure 2). The transient absorption spectrum was always measured with a fresh sample, in order to avoid degradation of C_{180} .⁷ The absorption bands are assigned to the triplet excited state of C_{180} $({}^{3}C_{180}^*$, since the absorption bands were quenched in the presence of oxygen, a triplet energy quencher. The decay lifetime (τ _T) of ³C₁₈₀* was estimated to be 24 µs (Inset of Figure 2), which is a similar value to those of $C_{60}R$ and C_{120} (Table 1).^{3,9} In Figure 2, a transient absorption spectrum of C_{120} is also shown. The spectrum of C_{180} showed slight broadening and increase in absorption intensity around 1000 nm compared to C_{120} . These findings will indicate slight interaction between C_{60} -moieties of ³ C_{180} ^{*}.

As mentioned above, the triplet absorption bands were quenched in the presence of oxygen with 1.2×10^9 dm³ mol⁻¹ s^{-1} of the rate constant. The quenching of the absorption band

Figure 2. Transient absorption spectrum of C_{180} in DCB at 100 ns after the laser irradiation (355 nm). Dot line indicates a transient absorption spectrum of C_{120} . Inset: Absoption-time profile of C_{180} at 700 nm.

Figure 3. Fluorescence spectra of singlet oxygen generated via C_{180} and C_{60} by excitation at 488 nm. Absorbance of C_{60} and C_{180} was matched at the excitation wavelength.

can be attributed to the energy transfer process, which yields singlet oxygen (${}^{1}O_{2}$ *). The generation of ${}^{1}O_{2}$ * was confirmed by observation of a fluorescence band of ${}^{1}O_{2}^{*}$ in the near-IR region (Figure 3), indicating that the energy level of ${}^{3}C_{180}$ ^{*} is higher than ${}^{1}O_{2}^{*}$. In Figure 3, the fluorescence of ${}^{1}O_{2}^{*}$ via the triplet excited C_{60} (³ C_{60} *) was also shown. Intensity of the fluorescence band of ${}^{1}O_{2}$ * via ${}^{3}C_{180}$ * is ca. 3/4 of that via ${}^{3}C_{60}$ *, even though the absorbance of C_{180} was matched with C_{60} at the excitation wavelength (488 nm). This finding indicates that the quantum yield for the intersystem crossing process (Φ_{isc}) of C_{180} is smaller than that of C_{60} . By employing the Φ_{isc} value of C_{60} as a standard (1.0),¹⁰ the Φ_{isc} value of C_{180} was estimated to be 0.74 ± 0.1 , which is smaller than those of C_{60} and $C_{60}R$. The

smaller Φ_{isc} value of C_{180} accords with the increase in the nonradiative process in the singlet excited state.

By employing the relative actinometry, an extinction coefficient of the triplet excited state (ϵ_{T}) of C_{180} was estimated to be 2.7×10^3 mol⁻¹ cm⁻¹ at 700 nm. The estimated value is smaller than other fullerene derivatives as listed in Table 1. The smaller ε_T value of C₁₈₀ explains the fact that the transient absorption band of C_{180} is smaller than that of C_{60} even though the absorbance of C_{180} was matched with C_{60} . It has been reported by Ma et al. that C_{60} -polymer showed barely detectable triplet-state absorption.² Thus, excited state properties of C_{180} seem to be intermediate one of $C_{60}R$ and C_{60} -polymer.

In conclusion, the excited properties of C₁₈₀ such as λ_{TT} and τ_{T} values are similar to those of $C_{60}R$ and C_{120} , while other excited state properties of C_{180} are affected by the non-radiative processes, which result in shorter fluorescence lifetime and small Φ_{isc} value. These aspects of C_{180} seem to become more evident in the photochemical processes, such as electron transfer. The studies are in progress.

The present work was partly supported by a Grant-in-Aid on Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 10207202, 11740380, and 12875163). The authors are also grateful to a financial support by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation.

References

- 1 For example, A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Dunkan, and I. J. Amster, *Science*, **259**, 955 (1993).
- 2 B. Ma, J. E. Riggs, and Y.-P. Sun, *J. Phys. Chem. B*, **102**, 5999 (1998).
- 3 M. Fujitsuka, C. Luo, O. Ito, Y. Murata, and K. Komatsu, *J. Phys. Chem. A*, **103**, 7155 (1999).
- 4 S. Lebedkin, W. E. Hull, A. Soldatov, B. Renker, and M. M. Kappes, *J. Phys. Chem. B*, **104**, 4101 (2000).
- 5 H. S. Cho, S. K. Kim, D. Kim, K. Fujiwara, and K. Komatsu, *J. Phys. Chem. A*, **104**, 9666 (2000).
- 6 M. Fujitsuka, H. Takahashi, T. Kudo, K. Tohji, A. Kasuya, and O. Ito, *J. Phys. Chem. A*, **105**, 675 (2001).
- 7 K. Komatsu, K. Fujiwara, and Y. Murata, *Chem. Lett.*, **2000**, 1016.
- 8 S. Uemura, M. Kunitake, O. Ito, K. Fujiwara, Y. Murata, and K. Komatsu, The 20th Fullerene General Symposium, Okazaki, January 2001, Abstr., p. 8.
- 9 C. Luo, M. Fujitsuka, A. Watanabe, O. Ito, L. Gan, Y. Huang, and C.-H. Huang, *J. Chem. Soc., Faraday Trans.*, **94**, 527 (1998).
- 10 J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J.Anz, and R. L. Whetten, *J. Phys. Chem.*, **95**, 11 (1991).